Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Methods Mol Biol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38607594

RESUMO

Non-small cell lung cancer (NSCLC) is a predominant form of lung cancer characterized by its aggressive nature and high mortality rate, primarily due to late-stage diagnosis and metastatic spread. Recent studies underscore the pivotal role of mitophagy, a selective form of autophagy targeting damaged or superfluous mitochondria, in cancer biology, including NSCLC. Mitophagy regulation may influence cancer cell survival, proliferation, and metastasis by modulating mitochondrial quality and cellular energy homeostasis. Herein, we present a comprehensive methodology developed in our laboratory for the evaluation of mitophagy in NSCLC tumor cells. Utilizing a combination of immunoblotting, immunocytochemistry, and fluorescent microscopy, we detail the steps to quantify early and late mitophagy markers and mitochondrial dynamics. Our findings highlight the potential of targeting mitophagy pathways as a novel therapeutic strategy in NSCLC, offering insights into the complex interplay between mitochondrial dysfunction and tumor progression. This study not only sheds light on the significance of mitophagy in NSCLC but also establishes a foundational approach for its investigation, paving way for future research in this critical area of cancer biology.

2.
Cell Mol Life Sci ; 81(1): 184, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630152

RESUMO

Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.


Assuntos
Nanopartículas , Nanoestruturas , Autofagia
3.
Front Cell Infect Microbiol ; 14: 1308362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476167

RESUMO

Infectious peritonitis is a leading cause of peritoneal functional impairment and a primary factor for therapy discontinuation in peritoneal dialysis (PD) patients. Although bacterial infections are a common cause of peritonitis episodes, emerging evidence suggests a role for viral pathogens. Toll-like receptors (TLRs) specifically recognize conserved pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, and fungi, thereby orchestrating the ensuing inflammatory/immune responses. Among TLRs, TLR3 recognizes viral dsRNA and triggers antiviral response cascades upon activation. Epigenetic regulation, mediated by histone deacetylase (HDAC), has been demonstrated to control several cellular functions in response to various extracellular stimuli. Employing epigenetic target modulators, such as epidrugs, is a current therapeutic option in several cancers and holds promise in treating viral diseases. This study aims to elucidate the impact of TLR3 stimulation on the plasticity of human mesothelial cells (MCs) in PD patients and to investigate the effects of HDAC1-3 inhibition. Treatment of MCs from PD patients with the TLR3 agonist polyinosinic:polycytidylic acid (Poly(I:C)), led to the acquisition of a bona fide mesothelial-to-mesenchymal transition (MMT) characterized by the upregulation of mesenchymal genes and loss of epithelial-like features. Moreover, Poly(I:C) modulated the expression of several inflammatory cytokines and chemokines. A quantitative proteomic analysis of MCs treated with MS-275, an HDAC1-3 inhibitor, unveiled altered expression of several proteins, including inflammatory cytokines/chemokines and interferon-stimulated genes (ISGs). Treatment with MS-275 facilitated MMT reversal and inhibited the interferon signature, which was associated with reduced STAT1 phosphorylation. However, the modulation of inflammatory cytokine/chemokine production was not univocal, as IL-6 and CXCL8 were augmented while TNF-α and CXCL10 were decreased. Collectively, our findings underline the significance of viral infections in acquiring a mesenchymal-like phenotype by MCs and the potential consequences of virus-associated peritonitis episodes for PD patients. The observed promotion of MMT reversal and interferon response inhibition by an HDAC1-3 inhibitor, albeit without a general impact on inflammatory cytokine production, has translational implications deserving further analysis.


Assuntos
Benzamidas , Interferon Tipo I , Peritonite , Piridinas , Viroses , Humanos , Interferon Tipo I/metabolismo , Receptor 3 Toll-Like/metabolismo , Epigênese Genética , Proteômica , Citocinas/metabolismo , Quimiocinas/metabolismo , Poli I-C/farmacologia , Receptores Toll-Like/metabolismo , Viroses/genética , Fenótipo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo
4.
J Mater Chem B ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529820

RESUMO

This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.

5.
Cancer Lett ; 585: 216661, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38309613

RESUMO

Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Autofagia , Transição Epitelial-Mesenquimal , Anticorpos Monoclonais/farmacologia
6.
Semin Cancer Biol ; 99: 24-44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309540

RESUMO

Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.


Assuntos
Neoplasias , Obesidade , Humanos , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Resultado do Tratamento , Autofagia/fisiologia , Neoplasias/etiologia , Neoplasias/metabolismo
7.
Cancers (Basel) ; 16(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398197

RESUMO

Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.

8.
Cell Commun Signal ; 22(1): 36, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216942

RESUMO

Prostate cancer, as one of the most prevalent malignancies in males, exhibits an approximate 5-year survival rate of 95% in advanced stages. A myriad of molecular events and mutations, including the accumulation of oncometabolites, underpin the genesis and progression of this cancer type. Despite growing research demonstrating the pivotal role of oncometabolites in supporting various cancers, including prostate cancer, the root causes of their accumulation, especially in the absence of enzymatic mutations, remain elusive. Consequently, identifying a tangible therapeutic target poses a formidable challenge. In this review, we aim to delve deeper into the implications of oncometabolite accumulation in prostate cancer. We center our focus on the consequential epigenetic alterations and impacts on cancer stem cells, with the ultimate goal of outlining novel therapeutic strategies.


Assuntos
Neoplasias , Neoplasias da Próstata , Masculino , Humanos , Epigênese Genética , Microambiente Tumoral , Neoplasias da Próstata/genética , Neoplasias/patologia , Mutação , Células-Tronco Neoplásicas/patologia
9.
Int J Pharm ; 649: 123622, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989403

RESUMO

Photodynamic therapy (PDT) represents a non-invasive treatment strategy currently utilized in the clinical management of selected cancers and infections. This technique is predicated on the administration of a photosensitizer (PS) and subsequent irradiation with light of specific wavelengths, thereby generating reactive oxygen species (ROS) within targeted cells. The cellular effects of PDT are dependent on both the localization of the PS and the severity of ROS challenge, potentially leading to the stimulation of various cell death modalities. For many years, the concept of regulated cell death (RCD) triggered by photodynamic reactions predominantly encompassed apoptosis, necrosis, and autophagy. However, in recent decades, further explorations have unveiled additional cell death modalities, such as necroptosis, ferroptosis, cuproptosis, pyroptosis, parthanatos, and immunogenic cell death (ICD), which helps to achieve tumor cell elimination. Recently, nanoparticles (NPs) have demonstrated substantial advantages over traditional PSs and become important components of PDT, due to their improved physicochemical properties, such as enhanced solubility and superior specificity for targeted cells. This review aims to summarize recent advancements in the applications of different metal-based NPs as PSs or delivery systems for optimized PDT in cancer treatment. Furthermore, it mechanistically highlights the contribution of RCD pathways during PDT with metal NPs and how these forms of cell death can improve specific PDT regimens in cancer therapy.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Apoptose , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166824, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37949196

RESUMO

Metastasis represents one of the most dangerous issue of cancer progression, characterized by intricate interactions between invading tumor cells, various proteins, and other cells on the way towards target sites. Tumor cells, while undergoing metastasis, engage in dynamic dialogues with stromal cells and undertake epithelial-mesenchymal transition (EMT) phenoconversion. To ensure survival, tumor cells employ several strategies such as restructuring their metabolic needs to adapt to the alterations of the microenvironmental resources via different mechanisms including macroautophagy (autophagy) and to circumvent anoikis-a form of cell death induced upon detachment from the extracellular matrix (ECM). This review focuses on the puzzling connections of autophagy and energetic metabolism within the context of cancer metastasis.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Proteínas , Autofagia
11.
Eur J Pharm Sci ; 191: 106600, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802230

RESUMO

Chemotherapy agents often exhibit limited effectiveness due to their fast elimination from the body and non-targeted delivery. Emerging nanomaterials as drug delivery carriers open new expectancy to overcome these limitations in current chemotherapeutic treatments. In this study, we introduce and evaluate a smart pH-responsive niosomal formulation capable of delivering Doxorubicin (DOX) and Curcumin (CUR) in both individually and co-loaded forms. In particular, drug-loaded niosomes were prepared using thin-film hydration method and then characterized via different physicochemical analyses. The pH responsivity of the carrier was assessed by performing a drug release study in three different pH conditions (4, 6.5, and 7.4). Finally, the anticancer efficacy of the therapeutic compounds was evaluated through the MTT assay. Our results showed spherical particles with a size of about 200 nm and -2 mV surface charge. Encapsulation efficiency (EE%) of the nanocarrier was about 77.06 % and 79.08 % for DOX and CUR, respectively. The release study confirmed the pH responsivity of the carrier. The MTT assay results revealed about 39 % and 43 % of cell deaths after treatment with cur-loaded and dox-loaded niosomes, which increased to 74 % and 79 % after co-administration and co-loading forms of drugs, respectively, exhibiting increased anticancer efficacy by selectively delivering DOX and CUR individually or in combination. Overall, these findings suggest that our nanoformulation holds the potential as a targeted and highly effective approach for cancer management and therapy, overcoming the limitations of conventional chemotherapy drugs.


Assuntos
Neoplasias da Mama , Curcumina , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Lipossomos , Células MCF-7 , Nanopartículas/química , Doxorrubicina , Portadores de Fármacos
12.
Cell Commun Signal ; 21(1): 226, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667345

RESUMO

With an average incidence of 1 in every 18,000 live births, retinoblastoma is a rare type of intraocular tumour found to affect patients during their early childhood. It is curable if diagnosed at earlier stages but can become life-threateningly malignant if not treated timely. With no racial or gender predisposition, or even environmental factors known to have been involved in the incidence of the disease, retinoblastoma is often considered a clinical success story in pediatric oncology. The survival rate in highly developed countries is higher than 95% and they have achieved this because of the advancement in the development of diagnostics and treatment techniques. This includes developing the already existing techniques like chemotherapy and embarking on new strategies like enucleation, thermotherapy, cryotherapy, etc. Early diagnosis, studies on the etiopathogenesis and genetics of the disease are the need of the hour for improving the survival rates. According to the Knudson hypothesis, also known as the two hit hypothesis, two hits on the retinoblastoma susceptibility (RB) gene is often considered as the initiating event in the development of the disease. Studies on the molecular basis of the disease have also led to deciphering the downstream events and thus in the discovery of biomarkers and related targeted therapies. Furthermore, improvements in molecular biology techniques enhanced the development of efficient methods for early diagnosis, genetic counseling, and prevention of the disease. In this review, we discuss the genetic and molecular features of retinoblastoma with a special emphasis on the mutation leading to the dysregulation of key signaling pathways involved in cell proliferation, DNA repair, and cellular plasticity. Also, we describe the classification, clinical and epidemiological relevance of the disease, with an emphasis on both the traditional and innovative treatments to tackle retinoblastoma. Video Abstract.


Assuntos
Neoplasias da Retina , Retinoblastoma , Pré-Escolar , Criança , Humanos , Retinoblastoma/diagnóstico , Retinoblastoma/genética , Retinoblastoma/terapia , Proliferação de Células , Reparo do DNA , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/genética , Neoplasias da Retina/terapia
13.
Eur J Pharmacol ; 958: 176013, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37633322

RESUMO

Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/patologia , Terapia de Alvo Molecular
16.
Eur J Pharm Sci ; 187: 106476, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37236377

RESUMO

Melanoma, a malignant form of skin cancer, has been swiftly increasing in recent years. Although there have been significant advancements in clinical treatment underlying a well-understanding of melanoma-susceptible genes and the molecular basis of melanoma pathogenesis, the permanency of response to therapy is frequently constrained by the emergence of acquired resistance and systemic toxicity. Conventional therapies, including surgical resection, chemotherapy, radiotherapy, and immunotherapy, have already been used to treat melanoma and are dependent on the cancer stage. Nevertheless, ineffective side effects and the heterogeneity of tumors pose major obstacles to the therapeutic treatment of malignant melanoma through such strategies. In light of this, advanced therapies including nucleic acid therapies (ncRNA, aptamers), suicide gene therapies, and gene therapy using tumor suppressor genes, have lately gained immense attention in the field of cancer treatment. Furthermore, nanomedicine and targeted therapy based on gene editing tools have been applied to the treatment of melanoma as potential cancer treatment approaches nowadays. Indeed, nanovectors enable delivery of the therapeutic agents into the tumor sites by passive or active targeting, improving therapeutic efficiency and minimizing adverse effects. Accordingly, in this review, we summarized the recent findings related to novel targeted therapy methods as well as nanotechnology-based gene systems in melanoma. We also discussed current issues along with potential directions for future research, paving the way for the next-generation of melanoma treatments.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/terapia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Nanotecnologia , Nanomedicina , Técnicas de Transferência de Genes
17.
Cell Biosci ; 13(1): 44, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871010

RESUMO

In recent years, progress in nanotechnology provided new tools to treat cancer more effectively. Advances in biomaterials tailored for drug delivery have the potential to overcome the limited selectivity and side effects frequently associated with traditional therapeutic agents. While autophagy is pivotal in determining cell fate and adaptation to different challenges, and despite the fact that it is frequently dysregulated in cancer, antitumor therapeutic strategies leveraging on or targeting this process are scarce. This is due to many reasons, including the very contextual effects of autophagy in cancer, low bioavailability and non-targeted delivery of existing autophagy modulatory compounds. Conjugating the versatile characteristics of nanoparticles with autophagy modulators may render these drugs safer and more effective for cancer treatment. Here, we review current standing questions on the biology of autophagy in tumor progression, and precursory studies and the state-of-the-art in harnessing nanomaterials science to enhance the specificity and therapeutic potential of autophagy modulators.

18.
J Exp Clin Cancer Res ; 41(1): 285, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163066

RESUMO

BACKGROUND: Gasdermin B (GSDMB) over-expression promotes poor prognosis and aggressive behavior in HER2 breast cancer by increasing resistance to therapy. Decoding the molecular mechanism of GSDMB-mediated drug resistance is crucial to identify novel effective targeted treatments for HER2/GSDMB aggressive tumors. METHODS: Different in vitro approaches (immunoblot, qRT-PCR, flow cytometry, proteomic analysis, immunoprecipitation, and confocal/electron microscopy) were performed in HER2 breast and gastroesophageal carcinoma cell models. Results were then validated using in vivo preclinical animal models and analyzing human breast and gastric cancer samples. RESULTS: GSDMB up-regulation renders HER2 cancer cells more resistant to anti-HER2 agents by promoting protective autophagy. Accordingly, the combination of lapatinib with the autophagy inhibitor chloroquine increases the therapeutic response of GSDMB-positive cancers in vitro and in zebrafish and mice tumor xenograft in vivo models. Mechanistically, GSDMB N-terminal domain interacts with the key components of the autophagy machinery LC3B and Rab7, facilitating the Rab7 activation during pro-survival autophagy in response to anti-HER2 therapies. Finally, we validated these results in clinical samples where GSDMB/Rab7/LC3B co-expression associates significantly with relapse in HER2 breast and gastric cancers. CONCLUSION: Our findings uncover for the first time a functional link between GSDMB over-expression and protective autophagy in response to HER2-targeted therapies. GSDMB behaves like an autophagy adaptor and plays a pivotal role in modulating autophagosome maturation through Rab7 activation. Finally, our results provide a new and accessible therapeutic approach for HER2/GSDMB + cancers with adverse clinical outcome.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Animais , Autofagia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Cloroquina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lapatinib/farmacologia , Camundongos , Recidiva Local de Neoplasia , Proteômica , Receptor ErbB-2/genética , Peixe-Zebra
19.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745656

RESUMO

Epithelial-mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIF-independent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach.

20.
Pharmaceutics ; 13(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959348

RESUMO

Mutant p53 proteins result from missense mutations in the TP53 gene, the most mutated in human cancer, and have been described to contribute to cancer initiation and progression. Therapeutic strategies for targeting mutant p53 proteins in cancer cells are limited and have proved unsuitable for clinical application due to problems related to drug delivery and toxicity to healthy tissues. Therefore, the discovery of efficient and safe therapeutic strategies that specifically target mutant p53 remains challenging. In this study, we generated gold nanoparticles (AuNPs) chemically modified with low molecular branched polyethylenimine (bPEI) for the efficient delivery of gapmers targeting p53 mutant protein. The AuNPs formulation consists of a combination of polymeric mixed layer of polyethylene glycol (PEG) and PEI, and layer-by-layer assembly of bPEI through a sensitive linker. These nanoparticles can bind oligonucleotides through electrostatic interactions and release them in the presence of a reducing agent as glutathione. The nanostructures generated here provide a non-toxic and powerful system for the delivery of gapmers in cancer cells, which significantly downregulated mutant p53 proteins and altered molecular markers related to cell growth and apoptosis, thus overcoming chemoresistance to gemcitabine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...